CONVECTION HEAT TRANSFER

VELOCITY BOUNDARY LAYER

Laminar and Turbulent VBL

THERMAL BOUNDARY LAYER

Local and Total Convection heat transfer

Dimensionless Numbers

Group	Definition	Interpretation
Biot number (Bi)	$\frac{hL}{k_s}$	Ratio of the internal thermal resistance of a solid to the boundary layer thermal resistance.
Mass transfer Biot number (Bi_m)	$rac{h_m L}{D_{ m AB}}$	Ratio of the internal species transfer resistance to the boundary layer species transfer resistance.
Bond number (Bo)	$\frac{g(\rho_l-\rho_v)L^2}{\sigma}$	Ratio of gravitational and surface tension forces.
Coefficient of friction (C_f)	$\frac{ au_s}{ ho V^2/2}$	Dimensionless surface shear stress.
Eckert number (<i>Ec</i>)	$\frac{V^2}{c_p(T_s - T_\infty)}$	Kinetic energy of the flow relative to the boundary layer enthalpy difference.
Fourier number (Fo)	$\frac{\alpha t}{L^2}$	Ratio of the heat conduction rate to the rate of thermal energy storage in a solid. Dimensionless time.
Mass transfer Fourier number (Fo_m)	$\frac{D_{\mathrm{AB}}t}{L^{2}}$	Ratio of the species diffusion rate to the rate of species storage. Dimensionless time.

Friction factor (f)	$\frac{\Delta p}{(L/D)(\rho u_m^2/2)}$	Dimensionless pressure drop for internal flow.
Grashof number (Gr_L)	$\frac{g\beta(T_s - T_{\infty})L^3}{v^2}$ $St \ Pr^{2/3}$	Measure of the ratio of buoyancy forces to viscous forces.
Colburn j factor (j_H)	V St $Pr^{2/3}$	Dimensionless heat transfer coefficient.
Colburn j factor (j_m)	$St_m Sc^{2/3}$	Dimensionless mass transfer coefficient.
Jakob number (<i>Ja</i>)	$\frac{c_p(T_s - T_{\rm sat})}{h_{fg}}$	Ratio of sensible to latent energy absorbed during liquid-vapor phase change.
Lewis number (<i>Le</i>)	$rac{lpha}{D_{ m AB}}$	Ratio of the thermal and mass diffusivities.
Nusselt number (Nu_L)	$rac{hL}{k_f}$	Ratio of convection to pure conduction heat transfer.
Peclet number (Pe_L)	$\frac{VL}{\alpha} = Re_L Pr$	Ratio of advection to conduction heat transfer rates.
Prandtl number (<i>Pr</i>)	$\frac{c_p \mu}{k} = \frac{\nu}{\alpha}$	Ratio of the momentum and thermal diffusivities.

Group	Definition	Interpretation
Reynolds number (Re_L)	$\frac{VL}{\nu}$	Ratio of the inertia and viscous forces.
Schmidt number (Sc)	$rac{ u}{D_{ m AB}}$	Ratio of the momentum and mass diffusivities
Sherwood number (Sh_L)	$rac{h_m L}{D_{ m AB}}$	Dimensionless concentration gradient at the surface.
Stanton number (St)	$\frac{h}{\rho V c_p} = \frac{N u_L}{R e_L P r}$	Modified Nusselt number.
Mass transfer Stanton number (St_m)	$\frac{h_m}{V} = \frac{Sh_L}{Re_L Sc}$	Modified Sherwood number.
Weber number (We)	$rac{ ho V^2 L}{\sigma}$	Ratio of inertia to surface tension forces.

-

External Flow

Correlation		Geometry	Conditions ^b
$\delta = 5x Re_x^{-1/2}$	(7.17)	Flat plate	Laminar, T_f
$C_{f,x} = 0.664 Re_x^{-1/2}$	(7.18)	Flat plate	Laminar, local, T_f
$Nu_x = 0.332Re_x^{1/2} Pr^{1/3}$	(7.21)	Flat plate	Laminar, local, T_f , $Pr \gtrsim 0.6$
$\delta_t = \delta P r^{-1/3}$	(7.22)	Flat plate	Laminar, T_f
$\overline{C}_{f,x} = 1.328 Re_x^{-1/2}$	(7.24)	Flat plate	Laminar, average, T_f
$\overline{Nu_x} = 0.664Re_x^{1/2} Pr^{1/3}$	(7.25)	Flat plate	Laminar, average, T_f , $Pr \gtrsim 0.6$
$Nu_x = 0.565 Pe_x^{1/2}$	(7.26)	Flat plate	Laminar, local, T_f , $Pr \leq 0.05$, $Pe_x \geq 100$
$C_{f,x} = 0.0592 Re_x^{-1/5}$	(7.28)	Flat plate	Turbulent, local, T_f , $Re_x \leq 10^8$
$\delta = 0.37x Re_x^{-1/5}$	(7.29)	Flat plate	Turbulent, T_f , $Re_x \leq 10^8$
$Nu_x = 0.0296Re_x^{4/5} Pr^{1/3}$	(7.30)	Flat plate	Turbulent, local, T_f , $Re_x \leq 10^8$, $0.6 \leq Pr \leq 60$
$\overline{C}_{f,L} = 0.074 Re_L^{-1/5} - 1742 Re_L^{-1}$	(7.33)	Flat plate	Mixed, average, T_f , $Re_{x, c} = 5 \times 10^5$, $Re_L \lesssim 10^8$

$\overline{C}_{f,L} = 0.074Re_L^{-1/5} - 1742Re_L^{-1}$	(7.33)	Flat plate	Mixed, average, T_f , $Re_{x, c} = 5 \times 10^5$, $Re_L \lesssim 10^8$
$\overline{Nu_L} = (0.037Re_L^{4/5} - 871)Pr^{1/3}$	(7.31)	Flat plate	Mixed, average, T_f , $Re_{x, c} = 5 \times 10^5$, $Re_L \lesssim 10^8$, $0.6 \lesssim Pr \lesssim 60$
$\overline{Nu_D} = C Re_D^m P r^{1/3}$ (Table 7.2)	(7.44)	Cylinder	Average, T_f , $0.4 \leq Re_D \leq 4 \times 10^5$, $Pr \geq 0.7$
$\overline{Nu_D} = C Re_D^m Pr^n (Pr/Pr_s)^{1/4}$ (Table 7.4)	(7.45)	Cylinder	Average, T_{∞} , $1 \leq Re_D \leq 10^6$, $0.7 \leq Pr \leq 500$
$\overline{Nu_D} = 0.3 + [0.62Re_D^{1/2} Pr^{1/3}]$ $\times [1 + (0.4/Pr)^{2/3}]^{-1/4}]$ $\times [1 + (Re_D/282,000)^{5/8}]^{4/5}$	(7.46)	Cylinder	Average, T_f , $Re_D Pr \gtrsim 0.2$
$ \overline{Nu_D} = 2 + (0.4Re_D^{1/2} + 0.06Re_D^{2/3})Pr^{0.4} \times (\mu/\mu_s)^{1/4} $	(7.48)	Sphere	Average, T_{∞} , $3.5 \le Re_D \le 7.6 \times 10^4$, $0.71 \le Pr \le 380$
$\overline{Nu_D} = 2 + 0.6Re_D^{1/2} P r^{1/3}$	(7.49)	Falling drop	Average, T_{∞}
$\overline{Nu}_D = 1.13C_1C_2 Re_{D,\text{max}}^m Pr^{1/3}$ (Tables 7.5, 7.6)	(7.52), (7.53)	Tube bank ^c	Average, \overline{T}_f , $2000 \leq Re_{D, \text{max}} \leq 4 \times 10^4$, $Pr \gtrsim 0.7$
$\overline{Nu}_D = CC_2 Re_{D,\text{max}}^m Pr^{0.36} (Pr/Pr_s)^{1/4}$ (Tables 7.7, 7.8)	(7.56), (7.57)	Tube bank ^c	Average, \overline{T} , $1000 \le Re_D \le 2 \times 10^6$, $0.7 \le Pr \le 500$

Internal Flow

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform q_s''
$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T_s
$\overline{Nu}_D = 3.66 + \frac{0.0668(D/L)Re_D Pr}{1 + 0.04[(D/L)Re_D Pr]^{2/3}}$	(8.56)	Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform T_s
or		
$\overline{Nu}_D = 1.86 \left(\frac{Re_D Pr}{L/D}\right)^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	(8.57)	Laminar, combined entry, $0.6 \le Pr \le 5$, $0.0044 \le (\mu/\mu_s) \le 9.75$, uniform T_s
$f = 0.316 Re_D^{-1/4}$	(8.20a) ^c	Turbulent, fully developed, $Re_D \lesssim 2 \times 10^4$
$f = 0.184 Re_D^{-1/5}$	$(8.20b)^{c}$	Turbulent, fully developed, $Re_D \gtrsim 2 \times 10^4$
or $f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, $3000 \le Re_D \le 5 \times 10^6$

$Nu_D = 0.023 Re_D^{4/5} Pr^n$	$(8.60)^d$	Turbulent, fully developed, $0.6 \lesssim Pr \lesssim 160$, $Re_D \gtrsim 10,000$, $(L/D) \gtrsim 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$
or $Nu_D = 0.027 Re_D^{4/5} P r^{1/3} \left(\frac{\mu}{\mu_s}\right)^{0.14}$ or	$(8.61)^d$	Turbulent, fully developed, $0.7 \lesssim Pr \lesssim 16,700$, $Re_D \gtrsim 10,000$, $L/D \gtrsim 10$
$Nu_D = \frac{(f/8)(Re_D - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	$(8.62)^d$	Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$, $3000 \lesssim Re_D \lesssim 5 \times 10^6$, $(L/D) \gtrsim 10$
$Nu_D = 4.82 + 0.0185(Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform q_s'' , $3.6 \times 10^3 \le Re_D \le 9.05 \times 10^5$, $10^2 \le Pe_D \le 10^4$
$Nu_D = 5.0 + 0.025(Re_D Pr)^{0.8}$	(8.65)	Liquid metals, turbulent, fully developed, uniform T_s , $Pe_D \gtrsim 100$

[&]quot;The mass transfer correlations may be obtained by replacing Nu_D and Pr by Sh_D and Sc, respectively.

^eFor tubes of noncircular cross section, $Re_D \equiv D_h u_m / \nu$, $D_h \equiv 4A_c / P$, and $u_m = \dot{m} / \rho A_c$. Results for fully developed laminar flow are provided in Table 8.1. For turbulent flow, Equation 8.60 may be used as a first approximation.

^bProperties in Equations 8.53, 8.55, 8.60, 8.61, 8.62, 8.64, and 8.65 are based on T_m ; properties in Equations 8.19, 8.20, and 8.21 are based on $T_f \equiv (T_s + T_m)/2$; properties in Equations 8.56 and 8.57 are based on $\overline{T}_m \equiv (T_{m,j} + T_{m,o})/2$.

Equations 8.20 and 8.21 pertain to smooth tubes. For rough tubes, Equation 8.62 should be used with the results of Figure 8.3.

^dAs a first approximation, Equations 8.60, 8.61, or 8.62 may be used to evaluate the average Nusselt number \overline{Nu}_D over the entire tube length, if $(L/D) \ge 10$. The properties should then be evaluated at the average of the mean temperature, $\overline{T}_m \equiv (T_{m,i} + T_{m,o})/2$.